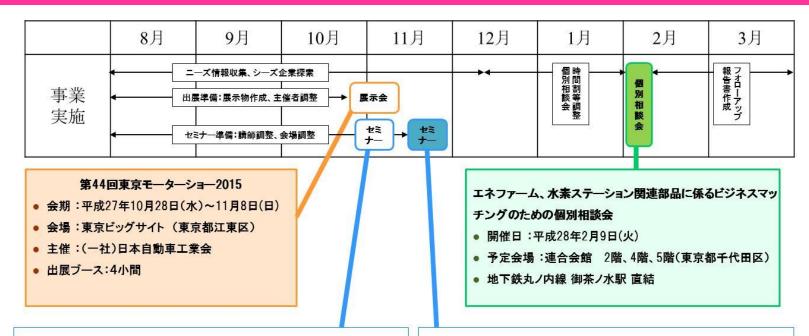


燃料電池セミナー in 東京

エネファーム、水素ステーション関連部品に係るビジネスマッチング個別相談会のご紹介

平成27年11月2日(月) 一般財団法人大阪科学技術センター 技術振興部 田島 收


目次

- 1. ビジネスマッチング個別相談会のご紹介
- 2. エネファーム関連部品
- 3. 水素ステーション関連部品
- 4. まとめ

1. ビジネスマッチング個別相談会のご紹介

経済産業省資源エネルギー庁委託事業「平成27年度新エネルギー等設備導入促進事業 (燃料電池セミナー運営事業)」

セミナー、展示会出展及び個別相談会開催

燃料電池セミナーin東京「FCV、水素STを中心に」

日時:11月2日(月) 13時30分~16時45分

場所:TOC有明コンベンションホール

講演:各30分+QA5分程度

- ·株式会社本田技術研究所(第五技術開発室 室長 丸山様)
- ・トヨタ自動車株式会社(技術統括部 主査 佐野様)
- •JX日鉱日石エネルギー株式会社(水素事業推進部 部長 和久様)
- •岩谷産業株式会社(常務執行役員 水素エネルギー部長 宮崎様)
- ・大陽日酸株式会社(プロジェクト推進統括部 専門部長 今村様)
- ・大阪科学技術センター(個別相談会の説明)

燃料電池セミナーin大阪「エネファームを中心に」

日時:11月17日(火) 13時30分~16時45分

場所:大阪科学技術センター 8階大ホール

講演:各30分+QA5分程度

- •アイシン精機株式会社(エネルギー技術部 GM 坂本様)
- ・パナソニック株式会社(燃料電池技術部 技術企画課長 中野様)
- (一財)石油エネルギー技術センター

(自動車・新燃料部 水素利用推進室 上席主任研究員 小林様)

- ・日本エア・リキード株式会社(事業推進部長 那須様)
- ・大阪科学技術センター(個別相談会の説明)

ビジネスマッチング個別相談会の開催

会場:連合会館 (東京都千代田区神田駿河台)

- ●開催日:平成28年2月9日(火) 10:30~17:00(予定)
- ●場所:連合会館 2階、4階、5階 会議室 (東京都千代田区)
- ●参加二一ズ企業(予定)
 - エネファームシステムメーカ:アイシン精機、東芝燃料電池システム、パナソニック他調整中
 - ・水素ステーションエンジニアリングメーカ: 岩谷産業、大陽日酸、日本エア・リキード他 調整中

個別相談会の実施イメージ

ニーズ企業と個室にて約25分/社 個別相談

				2016	年2月9日	日(火)	個別相談	炎会 時間	間割表	(例)		
											(一財)大	仮科学技術セン:
二一 ズ企業 面談者 (敬称略)		受付 符合	A社	B社	C社	D社	E社	F社	G社	H社	共有	I社
スタッ	ワ											
会議室		2階 200号室	4階 400号室	4階 401号室	4階 402号室	4階 403号室	4階 405号室	5階 500号室	5階 501号室	5階 502号室	5階 503号室	5階 504号室
1:00~		シーズ企業	400号至	401亏至	402亏至		<u>405号至</u> ニーズ企業連約			502亏至	303万至	904亏益
11:15		連絡事項			I	-	- 一へ正未足啊	7年4月、300万三	E			1
① 1:15~ 11:40	企業名		01	11	21	31	41	51	61	71	81	91
② 1:45~ 12:10	企業名		02	12	22	32	42	52	62	72	82	92
③ 2:15~ 12:40	企業名		03	13	23	33	43	53	63	73	83	93
2:40~ 13:25	昼食		昼食休憩									
3:25~ 13:40		シーズ企業 連絡事項	休憩									
④ 3:40∼ 14:05	企業名		04	14	24	34	44	54	64	74	84	94
⑤ 4:10~ 14:35	企業名		05	15	25	35	45	55	65	75	85	95
⑥ 4:40∼ 15:05	企業名		06	16	26	36	46	56	66	76	86	96
5:05~ 15:20		シーズ企業 連絡事項	休憩									
⑦ 5:20~ 15:45	企業名		07	17	15:20~共有 27	37	47	57	67	77	87	97
® 5:50~ 16:15	企業名		08	18	28	38	48	58	68	78	88	98
⑨ 6:20~ 16:45	企業名		09	19	29	39	49	59	69	79	89	99
~17:00	終了		アンケート記入・回収 ⇒ ニーズ企業は最終退席時に各階受付に提出願います。 シーズ企業は最終退席時に各階受付または200号室に提出願います。									

ビジネスマッチング個別相談会の流れ(案)

募集案内

(大阪科学技術センターHP)

・大阪科学技術センターホームページ及び セミナー参加企業、産業支援機関等を通じ、 広く募集します。

エントリーシート

平成28年1月8日(金)締切

・エントノーシートで、自社製品と技術概要をFR。面談は複数社申込可能です。

ニーズ企業審査

・可能な限り、多くの申込企業に面談いただけるよう調整いたしますが、時間の関係から、二一ズ企業の審査結果によって、面談企業を絞り込みさせていただきます。

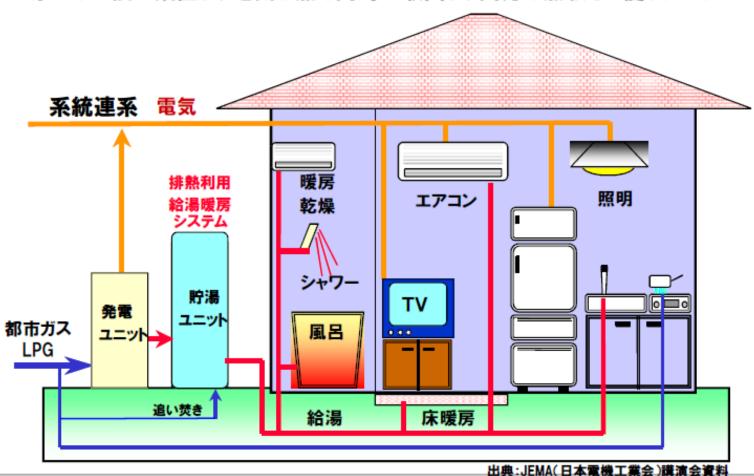
申込企業への通知 1月末頃

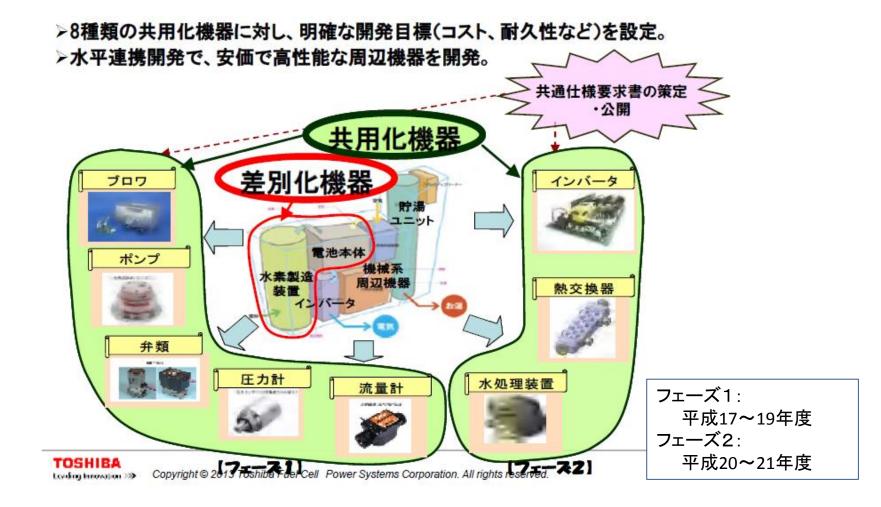
・二一ズ企業、シーズ企業へ確定した面談企業名と時間を連絡します。

ビジネスマッチング会 平成28年2月9日(火)

- ・面談するシーズ企業は当日の説明資料をご準備ください。 (自社概要は簡略にお願いします)
- ・面談は個室で実施します。
- ・企業名は呼ばず、「面談カード」の番号でお呼びします。

2. エネファーム関連部品

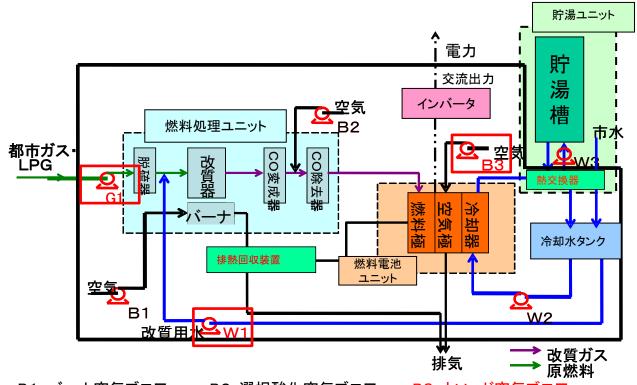




エネファームの設置イメージ

家のすぐ横に設置し、電気と熱を同時に取出し、両方を無駄なく使うシステム

NEDO補機プロジェクトで開発された機器の例



出典:東芝FCP講演資料、燃料電池セミナー in 福岡、再生可能エネルギー先端技術展2013, H25.10.17

家庭用燃料電池システムの低コスト化に向けて

エネファームの補機は、

- ・低圧力・低流量の空気、燃料、水を精度良く制御する必要がある
- 長い耐久時間、高い信頼性が必要
- -①改質水ポンプ(W1) ②燃料昇圧ブロア(G1) ③カソード空気ブロア(B3)の低コスト化

B1:バーナ空気ブロワ B2:選択酸化空気ブロワ B3:カソード空気ブロワ

G1: 燃料昇圧ブロワ W1: 改質水ポンプ W2: 冷却水ポンプ W3: 排熱回収ポンプ

補機・センサー類一覧

・ブロワー

バーナ空気ブロワー 選択酸化空気ブロワー カソード空気ブロワー 燃料昇圧ブロワー 換気ファン

・ポンプ

改質水ポンプ

冷却水ポンプ 排熱回収ポンプ

•弁 燃料遮断弁 流量調節弁

•流量計

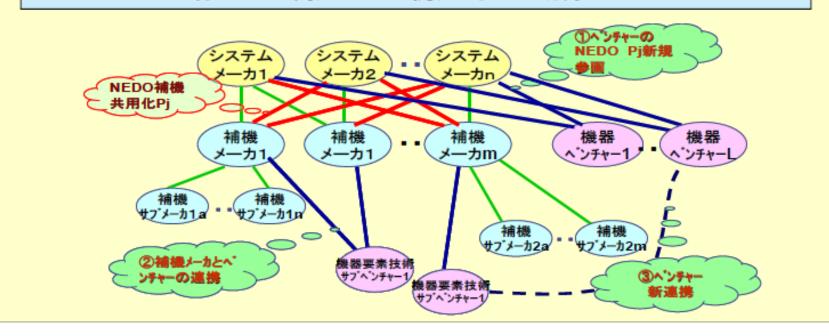
バーナ空気流量計 カソード空気流量計 バーナ燃料流量計 原燃料流量計 改質水流量計

・センサー

可燃性ガスセンサー 温度センサー 圧力センサー 水位センサー

改質水ポンプ

燃料昇圧ブロワ


空気ブロワ

・その他

燃料点火ヒータ 着火検知器 温水ヒータ 断熱材 加湿器 熱交換器 空気フィルタ 配線ハーネス マルチ配管 水処理装置 水タンク オートドレン 他

連携強化と産業創生への期待

- ▶燃料電池の周辺機器開発に対する、さまざまな企業の参画チャンス
- >意欲ある地方中小ベンチャーとの連携の可能性 ⇒新しい産業創生の可能性
 - 縦串から横串&マトリックス構造への展開
 - 自律的且つ創発的な連携実現への期待

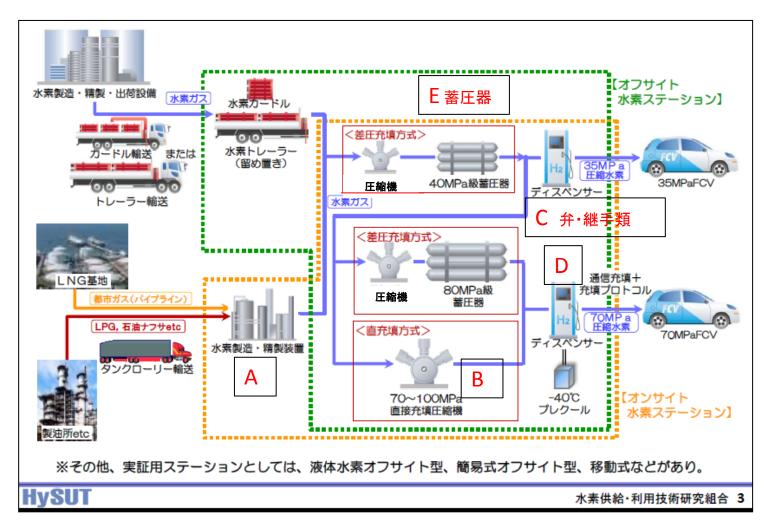
出典:東芝FCP講演資料、燃料電池セミナー in 福岡、再生可能エネルギー先端技術展2013, H25.10.17

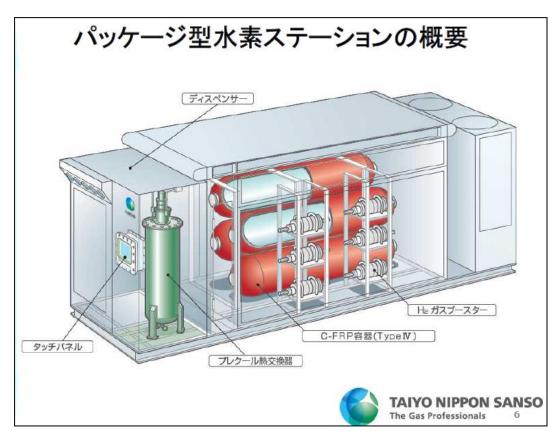
エネファーム補機等の要望事項まとめ

- ●長寿命化技術:8~9万時間⇒ポンプ、ブロワなど
- ●小型・低コスト化技術
- ●省電力・低騒音(37dB程度)(低周波数)の新技術 ⇒弁・ポンプ・ブロワ
- ●制振材料に関する新技術⇒遮断弁の消音化
- ●新材料、新断熱材料等の新技術
- ●複数機器のモジュール化技術、マルチ配管技術 ⇒樹脂成型・融着技術など
- ●企業間の積極的な連携による技術革新

【参考】 NEDO 家庭用燃料電池システム関連補機類の共通仕様リスト 2010年3月

http://www.nedo.go.jp/library/pamphlets/ZZ_pamphlets_06nenryou_kateiyou.html


3. 水素ステーション関連部品



水素ステーションの代表的な形式

出典: HySUT講演資料、燃料電池セミナーin 東京、 東京モータショー、H25.11.28

パッケージ型水素ステーションの例

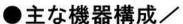
水素ステーション関連部品の例① 水素製造装置(A)

- ●部品名/水素製造装置(A)
- ●用 途/都市ガスやLPGから高純度水素を製造する
- ●主な機器構成/
- ・ボイラー...水から水蒸気を製造。
- 水蒸気改質器…原料ガスと水蒸気から触媒改質により水素を製造。
- ・CO変成器…水蒸気改質器からの水素を含む生成ガス中に残存するCOを触媒改質によりCO2と水素に変換。
- ・PSA(圧力スィング吸着)装置...CO変成器からの水素を含む生成ガスより純度99.99%の水素を精製。

		T		
項目	単位			
原燃料		都市ガス 又は LPG		
製造水素条件				
流量	(Nm³/h)	100 又は 300		
温度	(°C)	常温~40		
圧力	(Mpa、ゲージ)	0.6以上		
計画ガス組成		ISO14687-2を満足すること		
水素濃度	(%)	<u>≥</u> 99. 97		
CO	(ppm)	≦ 0.2		
S	(ppm)	≦0.004		
その他				
目標コスト	50百万円*1			
備考	*1 製造水素流量が300Nm3/hの場合			

水素ステーション関連部品の例 圧縮機(B)

- ●部品名/圧縮機(B)
- ●用 途/水素製造装置や水素トレーラーから供給される水素ガスを昇圧する。
- ●主な機器構成/
- •圧縮機本体
- ・冷却水等循環装置...水素ガスの昇圧により水素ガスと圧縮機本体が温度上 昇するため、これらを冷却するための冷却水等を循環させる。
- 熱交換器…温度上昇した水素ガスと冷却水等との熱交換を行う。
- •制御盤



流体条件		水素			
受入圧力	(Mpa, ゲージ)	0.4~1.0			
製造水素条件					
圧縮能力	(Mpa, ゲージ)	82以上 * 1			
圧縮水素温度	(%)	常温~40			
流量 * 2					
1)直接充填用	(Nm3/h)	2000			
2)差圧充填用 * 3	(Nm3/h)	300			
使用材料	高圧ガス保安法に準拠、又は特認等が得られた材料を使用すること				
その他	製造水素ガス内に油分等の不純物や異物の混入なきこと				
目標コスト	65百万円 * 4				
備考	*1 FCVへの70MPa充填を想定。ただし、将来の規制見直しによりFCVに 87.5MPaで充填可能な仕様が求められる予定 *2 製造水素の流量については、複数の圧縮機等を組み合わせても良い ものとする *3 差圧・直接充填併用の場合も含む *4 直接充填用で、製造水素流量が2,000Nm3/hの場合				

出典:経済産業省資源エネルギー庁平成25年度燃料電池セミナー事業展示会パネル資料より抜粋

水素ステーション関連部品の例②-1 プレクーラー(D)

- ●部品名/プレクーラー(D)
- ●用 途/FCVへの水素ガス充填時に、FCVの水素タンク 内温度が85℃以上に上昇しないようにするため、 ディスペンサー内を流通する水素ガスを冷却し、 充填ノズルの出口水素ガス温度が-40℃となる ようにする設備

- 熱交換器...水素ガスと冷却水等との熱交換を行う。
- ・冷凍機(ブラインチラー等)…冷却水等を冷却し、循環させる。

項目	単位					
流体条件		水素				
受入温度	(°C)	常温~40				
使用条件						
使用可能圧力	(Mpa, ゲージ)	70以上 *1				
最大流量	(Nm3/h)	2000				
使用材料	判高圧ガス保安法に準拠、または特認等が得られた材料を使用すること					
その他 ・充填ノズルの出口水素ガス温度が-40℃となる冷凍能力を有る						
目標コスト	24百万円					
備考	*1 FCVへの70MPa充填を想定。ただし、将来の規制見直しによりFCVに 87.5MPaで充填可能な仕様が求められる予定					

水素ステーション関連部品の例②-2

(信頼性を確保した製品開発ができれば、市場参入が可能と思われる商品)

(2)プレクーラー

<概要>

-33℃~-40℃、水素5kgを3分でFCVへ充填に対応できるシステム。

<条件>

- ・水素40°C、5kgを-40°Cまで冷却する能力
- ・法的な開放試験に対応(例:金属の表面状況を検査等できること)
- ・水素漏れのない
- ・充填プロトコル(SAE J2601に記載)→充填量(流量)、流速(CV値のとれるもの)
- -50°C~90°Cで使用できる素材(高圧ガス保安法 例示基準に記載)
- ・一般高圧ガス保安規則第7条の3等に対応+HyTReCでの試験

<必要な技術>

- 熱交換器(水素、冷媒)
- 水素出口温度コントロール(-33℃~-40℃)

水素ステーション関連部品の例③

(信頼性を確保した製品開発ができれば、市場参入が可能と思われる商品)

(3)充填ノズル

(要望:シール性、低コスト化)

<概要>

車側レセクタブルにあったディスペンサー側ノズル設計

く条件>

- ・漏れのない
- 充填プロトコル(SAE J2601に記載)
 - →充填量(流量)、流速(CV値のとれるもの)
- -50°C~90°Cで使用できる素材(高圧ガス保安法 例示基準に記載)
- ・国内の設計基準に適合+HyTReCでの試験

<必要な技術>

- •SUS精密加工
- ・高圧ガス保安法対応を理解している

水素ステーション関連部品の例4

(信頼性を確保した製品開発ができれば、市場参入が可能と思われる商品)

(4)緊急離脱カプラ

(要望:信頼性、低コスト化)

<概要>

ディスペンサー充填ノズル用ホースが無理に引っ張られた際、安全に外れる

<条件>

- ・漏れのない
- ・離脱時には安全確保できる
- ・国内の設計基準に適合+HyTReCでの試験

<必要な技術>

- ・SUS精密加工技術を持っている
- ・高圧ガス保安法対応を理解している

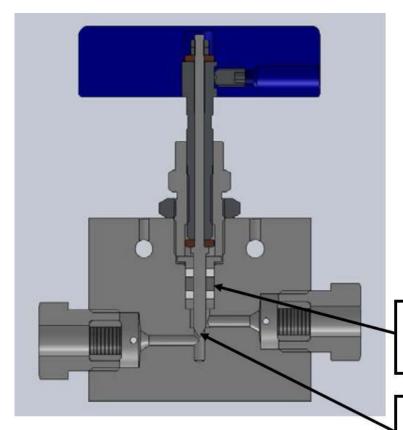
水素ステーション関連部品の例5-1 弁・継手類(C)

- ●部品名/弁·継手類(c)
- ●用 途/水素ガスの流通を制御するための機器。
- ●弁の種類/(1)手動弁:主配管用(高Cv値)、

枝配管用(圧力計元弁等)

(2)自動遮断弁:主配管用(高Cv值)、

(3)流量調節弁:主配管用



項目	単位			
液体条件		水素		
使用条件				
使用可能圧力	(Mpa, ゲージ)	82以上 * 1		
温度				
1) 蓄圧器回り	(°C)	−30 ~ 85		
2) ディスペンサ周り	(℃)	−40 * 2 ~ 50		
3)上記1)2)以外	(°C)	−30 ~ 70		
自動遮断弁の耐久性	開閉30万回以上			
使用材料	高圧ガス保安法に準拠、又は特認等が得られた材料を使用すること			
その他	上記高圧水素下においても水素が漏えいしないこと			
目標コスト	3百万円の内数			
備考	*1 FCVへの70MPa充填を想定。ただし、将来の規制見直しによりFCVに 87.5MPaで充填可能な仕様が求められる予定 *2 ただし、将来の規制見直しにより-50℃がもとめられる予定			

出典:経済産業省資源エネルギー庁平成25年度燃料電池セミナー事業展示会パネル資料

ニードルバルブのシール部材の例5-2

仕様

最高許容圧力	99MPa(85°C)
仕様流体温度範囲	-40~+85°C ※
Cv値	0.23
耐圧部材質	SUS316 ※
接続	高圧・中圧コーン&スレッド
操作方式	手動

※ -40~10°C:Ni当量28.5以上 絞り75%以上

-10~85℃: Ni当量27.4以上 絞り75%以上

<u>軸シール部</u> 上下運動を行う弁棒を シールする樹脂部品

<u>弁体シール部</u> ステライト®製の弁棒 を上から押え付けて シールする。

水素ステーション関連部品の例5-3

(信頼性を確保した製品開発ができれば、市場参入が可能と思われる商品)

(5)バルブ・調整器等のシール材部品

- <概要>
- ・低温に耐えられる樹脂材料の開発
- <条件>
- ・漏れのない
- -50°C~90°Cで使用できる素材(高圧ガス保安法 例示基準に記載)
- ・国内の設計基準に適合+HyTReCでの試験

(6)継ぎ手

- く概要>
- ・シール部材として樹脂材料、金属ガスケット
- く条件>
- ・漏れのない
- -50°C~90°Cで使用できる素材(高圧ガス保安法 例示基準に記載)
- ・振動に強い
- ・メンテナンスが容易(取り外しが容易、ねじ部が緩まない等)
- ・国内の設計基準に適合+HyTReCでの試験

水素ステーション関連部品の例⑥

(信頼性を確保した製品開発ができれば、市場参入が可能と思われる商品)

(7)配管の溶接接続技術及び溶接検査技術

<概要>

- ・素材の特性が失われない自動溶接技術(強度、Ni当量)及び 非破壊検査技術
- ・不溶着部のない溶接技術

<条件>

- ・漏れのない
- -50°C~90°Cで使用できる素材(高圧ガス保安法に記載)
- ・振動に強い
- ・国内の設計基準に適合+HyTReCでの試験

水素容器等の試験設備の例

(公財)水素エネルギー製品研究試験センター

HyTReC:

バルブ、センサー等の耐久性試験

(公財)水素エネルギー製品研究試験センター(HyTReC)

事業概要

水素エネルギー製品研究試験センターで は、水素ガス環境下で使用する「バルブ」 「センサー」など水素関連製品の耐久性 試験や企業との共同研究開発などを通 じて中小・ベンチャー企業の水素エネル ギー新産業への参入を支援しています。 (所在地:福岡県糸島市)

HvTReCで実施する代表的な水素製品試験

●高圧水素試験室

耐久試験、場大GGMPaの水準の正確、停止性制の返しながら、原居を中勤させ、その軽久性を開始する。 気管試験、7成製体へ最大110MPaの水準を形でん、皮管し設験体の気管性素や開発する。 圧力サイクAは脚、水準をよって開催・力能をした上間・円板に力を繰り返し加え、地域体への影響を構 環境試験(技験体へ大策を記載させての、減のの温度を変化される機体の影響を開発する。

●破裂・耐久試験室

磁型配動(水圧) 紅頭体へ水圧を加え、磁型する時の圧力を測定し、凝制性素を通常する。 服圧試験(水圧) 対象体へ相同の圧力の1.5級以上の圧力を加え、脈圧性験や減密する。 圧力がく力を開放(水圧) (銀幣体へ強化し上版) (物圧力を必要し近え、試験体への影響を確認する。 ハイスピードカメラ番番/確認が誰をハイスピードカメラで撮影し、確認時の参数を確認する。

援助収録/ 試験体を強制的に援助させ、援助による 影響を確認する。 はい国際が明点原理的 改賞額から発生した不利物を含む 水原(改賞ガス)を要要した性状間層水質を 試験体へ記憶させ、その影響を確認する。

耐久試験/ 最大の、BMPsの水素の液産/停止を輸っ返しながら、 製品を作動させ、その個久性を確認する。 試験体へ水酔を浸透させつつ。廻りの温度を変化させ、 試験体への影響を凝縮する。 ヒートショック試験/ 試験体限のの温度を象徴に変化させ用機強/

試験体へ水原を液晶させつつ、廻りの温度を変化させ、試験体への 影響を確認する。

ヒートショック試験/ 試験体質のの温度を象徴に変化させ、発素法/ 収慮による試験体への影響を課題する。

●その他の試験設備

高温タイプオートクレーブ 高圧タイプオートクレーブ 気管チャンパー など

出典:HVTRgCパンフレット

水素ステーション用大型水素タンクの開発、実用化に取り組む企業を支 援するため、平成26年4月に新しい試験施設が完成しました。これによ り、水素ステーションで使用される大型水素容器の認証取得に必要な すべての試験が実施可能となりました。

また、2,400m3/hrの水素供給能力を有するため、水素燃料電池自動車 の実使用環境を想定した試験も実施可能です。

設備概要

高圧水素ガス試験室(4室)

常温圧力サイクル試験室(1室)

膨張量測定室(1室)

環境温度圧力サイクル試験室(1室)

破裂試験室(1室)

水素ステーション要望事項まとめ

【要望事項】

- ●超高圧・低温(-40°C)水素に対応する新材料技術 (SUS316L, Ni当量28.5以上、絞り75%以上など)
- ●自動溶接技術、非破壊検査技術
- ●高肉厚配管曲げ技術
- ●高圧力水素シール技術
- ●センサー・制御技術(水素、圧力、温度、流量、制御弁、
- ●遮断弁、安全弁、防爆技術など)
- ●精密加工技術
- ●断熱材料、制振材料等の新技術
- ●ステーション建設土木工事技術(地元業者など)

4. まとめ

まとめ

1. エネファーム関係

- 各社2~3万台/年を越え、今後10万台/年以上を目指している (目標: 2020年 140万台、 2030年 530万台)
- 責任を持って量産化できるメーカの参入
- ・複数機器の一体化等によるコストダウンの提案も期待
- ・企業間の連携等による補機類機器の新たな提案

2. 水素ステーション関係

- ・これまでに80箇所程度の水素ステーションを整備することが決定。 2014年12月にトヨタが燃料電池自動車「ミライ」を販売開始
- ・新規市場で、機器開発・建設・運用・保守等の分野に新規参入の チャンス
- ・高圧ガス保安法対応を理解している企業が望ましい

個別相談会のまとめ

3. 二一ズ企業の希望する技術

・仕様、台数、コスト目標などは、 NEDO共通仕様、本セミナー仕様等で概要把握 →相談会を通じて各メーカと打合せ ⇒詳細内容の把握

4. 個別相談会の成功例

- ・独自技術と事前準備が重要 (困ったらOSTECに相談)
- 面談企業の指名
- ・(自社技術)+(ニーズ企業の要望)=契約
- ・独自技術を有し、ニーズ企業と一緒になって小型化・低価格化を実現する「やる気のある企業」

5. メリット

- ニーズ企業とのネットワーク構築
- ・新規分野への進出 ⇒ 売上、利益の向上

ご清聴ありがとうございました。

ご不明な点・ご相談等がありましたら、遠慮なく下記 へお問い合わせください。

【お問合せ先】

大阪科学技術センター 技術振興部 田島、金田、中西、大原

・メール: ostec01@ostec.or.jp

●電 話: 06-6443-5340

•ファックス: 06-6443-5319